Wat is die verskil tussen lineêre eksponensiële en kwadratiese?
Wat is die verskil tussen lineêre eksponensiële en kwadratiese?
Anonim

Lineêr , eksponensieel en kwadraties funksies kan gebruik word om werklike verskynsels te modelleer. Algebraïes, lineêr funksies is polinoomfunksies met 'n hoogste eksponent van een, eksponensiële funksies het 'n veranderlike in die eksponent, en kwadraties funksies is polinoomfunksies met 'n hoogste eksponent van twee.

Behalwe dit, wat is lineêre kwadraties en eksponensieel?

As die eerste verskil dieselfde waarde is, sal die model wees lineêr . As die tweede verskil dieselfde waarde is, sal die model wees kwadraties . As die aantal kere wat die verskil geneem is voordat herhaalde waardes gevind is vyf oorskry, kan die model wees eksponensiële of 'n ander spesiale vergelyking.

Tweedens, wat is lineêre en eksponensiële funksies? Lineêre funksies is reguit lyne terwyl eksponensiële funksies is geboë lyne. As dieselfde getal by y gevoeg word, dan is die funksie het 'n konstante verandering en is lineêr . As die y-waarde met 'n sekere persentasie toeneem of afneem, dan is die funksie is eksponensiële.

Ook om te weet is, wat is die verskil tussen lineêr en eksponensieel?

Lineêr funksies verander teen 'n konstante tempo per eenheidsinterval. An eksponensiële funksie verander deur 'n gemeenskaplike verhouding oor gelyke intervalle.

Hoe bepaal jy of 'n funksie lineêr is?

A lineêre funksie is in die vorm y = mx + b of f(x) = mx + b, waar m die helling of tempo van verandering is en b die y-afsnit is of waar die grafiek van die lyn die y-as kruis. Jy sal agterkom dat dit funksie is graad 1 wat beteken dat die x-veranderlike 'n eksponent van 1 het.

Aanbeveel: